O.P.Code: 20CE0102

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech I Year II Semester Regular & Supplementary Examinations August-2023

ENGINEERING MECHANICS

(Civil Engineering)

Time: 3 Hours

1171 11 1 2 4 4 (0) (1)

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1 a Classify different system of forces with suitable examples

CO1 L2 6M

Max. Marks: 60

b The resultant of two forces when they act at right angles is 10N, whereas when they act at an angle of 60° the resultants is $\sqrt{148}$. Determine the magnitude of the two forces

CO1 L3 6M

OR

2 a State and prove parallelogram law of forces.

CO1 L2 7M

b A weight of 800N is supported by two chains as shown in Fig. CO1 L3 5M Determine the tension in each chain using Lami's theorem

UNIT-II

3 a Find the value of ' θ ' if the block 'A' and 'B' shown in Fig. have CO3 L4 8M impending motion. Given weight of Block-A = 200 N and that of Block-B = 200 N, $\mu_A = \mu_B = 0.25$.

b What are the various laws of friction?

CO₃ L₂

2 4M

UK

4 a Determine the forces in all the members of the truss shown in Fig using CO2 L4 9M method of joints

b State the assumptions made in truss analysis

CO₂ L₂

3M

OR

6 An I-section is made up of three rectangles as shown in Fig. Find the MOI CO4 L3 of the section about the horizontal axis passing through the C.G of the section.

7 Define the following terminologies.

CO5 L2 12M

12M

12M

L3

- (a) Stress & its types (c) Modulus of elasticity & Modulus of rigidity
- (b) Strain & its types (d) Poisson's ratio & Bulk modulus

OR

At a point within a body subjected to two mutually perpendicular directions, the stresses are 100 MPa (tensile) and 75 MPa (tensile). Each of the above stresses is accompanied by a shear stress of 75 MPa. Determine the normal, shear and resultant stresses on an oblique plane inclined at an angle of 45° with the axis of minor tensile stress

UNIT-V

9 Derive an expression for determining the circumferential stress (or hoop CO6 L4 12M stress) and longitudinal stress for thin cylinder.

OR

10 A shell 3.25m long, 1m in diameter is subjected to an internal pressure of 1 N/mm². If the thickness of the shell is 10mm, find the circumferential and longitudinal stresses. Find also the maximum shear stress and the changes in the dimensions of the shell. Take $E = 2 \times 10^5$ N/mm² and $\mu = 0.3$

*** END ***